欢迎来到入门教程网!

C语言

当前位置:主页 > 软件编程 > C语言 >

C++实现分水岭算法(Watershed Algorithm)

来源:本站原创|时间:2020-01-10|栏目:C语言|点击:

分水岭分割方法(Watershed Segmentation),是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明。在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭。
  分水岭的计算过程是一个迭代标注过程。分水岭比较经典的计算方法是L. Vincent提出的。在该算法中,分水岭计算分两个步骤,一个是排序过程,一个是淹没过程。首先对每个像素的灰度级进行从低到高排序,然后在从低到高实现淹没过程中,对每一个局部极小值在h阶高度的影响域采用先进先出(FIFO)结构进行判断及标注。
  分水岭变换得到的是输入图像的集水盆图像,集水盆之间的边界点,即为分水岭。显然,分水岭表示的是输入图像极大值点。因此,为得到图像的边缘信息,通常把梯度图像作为输入图像,即:
  grad(f(x,y))=((f(x-1,y)-f(x+1,y))^2 + (f(x,y-1)-f(x,y+1))^2)^0.5
  式中,f(x,y)表示原始图像,grad(.)表示梯度运算。
  分水岭算法对微弱边缘具有良好的响应,图像中的噪声、物体表面细微的灰度变化,都会产生过度分割的现象。但同时应当看出,分水岭算法对微弱边缘具有良好的响应,是得到封闭连续边缘的保证的。另外,分水岭算法所得到的封闭的集水盆,为分析图像的区域特征提供了可能。
  为消除分水岭算法产生的过度分割,通常可以采用两种处理方法,一是利用先验知识去除无关边缘信息。二是修改梯度函数使得集水盆只响应想要探测的目标。
  为降低分水岭算法产生的过度分割,通常要对梯度函数进行修改,一个简单的方法是对梯度图像进行阈值处理,以消除灰度的微小变化产生的过度分割。即:
  g(x,y)=max(grad(f(x,y)),gθ)
  式中,gθ表示阈值。
  程序可采用方法:用阈值限制梯度图像以达到消除灰度值的微小变化产生的过度分割,获得适量的区域,再对这些区域的边缘点的灰度级进行从低到高排序,然后在从低到高实现淹没的过程,梯度图像用Sobel算子计算获得。对梯度图像进行阈值处理时,选取合适的阈值对最终分割的图像有很大影响,因此阈值的选取是图像分割效果好坏的一个关键。缺点:实际图像中可能含有微弱的边缘,灰度变化的数值差别不是特别明显,选取阈值过大可能会消去这些微弱边缘。

  下面用C++实现分水岭算法:

#define _USE_MATH_DEFINES 
 
#include <cstddef> 
#include <cstdlib> 
#include <cstring> 
#include <climits> 
#include <cfloat> 
#include <ctime> 
#include <cmath> 
#include <cassert> 
#include <vector> 
#include <stack> 
#include <queue> 
 
using namespace std; 
 
 
 
typedef void              GVVoid; 
typedef bool              GVBoolean; 
typedef char              GVChar; 
typedef unsigned char          GVByte; 
typedef short              GVInt16; 
typedef unsigned short         GVUInt16; 
typedef int               GVInt32; 
typedef unsigned int          GVUInt32; 
typedef long long            GVInt64; 
typedef unsigned long long       GVUInt64; 
typedef float              GVFloat32; 
typedef double             GVFloat64; 
 
const GVBoolean GV_TRUE         = true; 
const GVBoolean GV_FALSE        = false; 
const GVByte              GV_BYTE_MAX = UCHAR_MAX; 
const GVInt32              GV_INT32_MAX = INT_MAX; 
const GVInt32              GV_INT32_MIX = INT_MIN; 
const GVInt64              GV_INT64_MAX = LLONG_MAX; 
const GVInt64              GV_INT64_MIN = LLONG_MIN; 
const GVFloat32 GV_FLOAT32_MAX     = FLT_MAX; 
const GVFloat32 GV_FLOAT32_MIN     = FLT_MIN; 
const GVFloat64 GV_FLOAT64_MAX     = DBL_MAX; 
const GVFloat64 GV_FLOAT64_MIN     = DBL_MIN; 
 
class                  GVPoint; 
 
 
 
class GVPoint { 
 
public: 
  GVInt32       x; 
  GVInt32       y; 
 
public: 
  GVPoint() : x(0), y(0) { } 
  GVPoint(const GVPoint &obj) : x(obj.x), y(obj.y) { } 
  GVPoint(GVInt32 x, GVInt32 y) : x(x), y(y) { } 
 
public: 
  GVBoolean operator ==(const GVPoint &right) const { 
    return ((x == right.x) && (y == right.y)); 
  } 
  GVBoolean operator !=(const GVPoint &right) const { 
    return (!(x == right.x) || !(y == right.y)); 
  } 
}; 
 
 
 
/* 
 * <Parameter> 
 *   <image> image data; 
 *   <width> image width; 
 *   <height> image height; 
 *   <label out> image of labeled watersheds. 
 */ 
GVVoid gvWatershed( 
    const GVByte *image, 
    GVInt32 width, 
    GVInt32 height, 
    GVInt32 *label) 
{ 
 
  // Local constants 
  const GVInt32 WSHD = 0; 
  const GVInt32 INIT = -1; 
  const GVInt32 MASK = -2; 
  const GVPoint FICT_PIXEL = GVPoint(~0, ~0); 
 
  // Image statistics and sorting 
  GVInt32 size = width * height; 
  GVInt32 *image_stat = new GVInt32[GV_BYTE_MAX + 1]; 
  GVInt32 *image_space = new GVInt32[GV_BYTE_MAX + 1]; 
  GVPoint *image_sort = new GVPoint[size]; 
  ::memset(image_stat, 0, sizeof (GVInt32) * (GV_BYTE_MAX + 1)); 
  ::memset(image_space, 0, sizeof (GVInt32) * (GV_BYTE_MAX + 1)); 
  ::memset(image_sort, 0, sizeof (GVPoint) * size); 
  for (GVInt32 i = 0; !(i == size); ++i) { 
    image_stat[image[i]]++; 
  } 
  for (GVInt32 i = 0; !(i == GV_BYTE_MAX); ++i) { 
    image_stat[i + 1] += image_stat[i]; 
  } 
  for (GVInt32 i = 0; !(i == height); ++i) { 
    for (GVInt32 j = 0; !(j == width); ++j) { 
      GVByte space = image[i * width + j]; 
      GVInt32 index = image_stat[space] - (++image_space[space]); 
      image_sort[index].x = j; 
      image_sort[index].y = i; 
    } 
  } 
  for (GVInt32 i = GV_BYTE_MAX; !(i == 0); --i) { 
    image_stat[i] -= image_stat[i - 1]; 
  } 
 
  // Watershed algorithm 
  GVPoint *head = image_sort; 
  GVInt32 space = 0; 
  GVInt32 *dist = new GVInt32[size]; 
  GVInt32 dist_cnt = 0; 
  GVInt32 label_cnt = 0; 
  std::queue<GVPoint> queue; 
  ::memset(dist, 0, sizeof (GVInt32) * size); 
  ::memset(label, ~0, sizeof (GVInt32) * size); 
  for (GVInt32 h = 0; !(h == (GV_BYTE_MAX + 1)); ++h) { 
    head += space; 
    space = image_stat[h]; 
    for (GVInt32 i = 0; !(i == space); ++i) { 
      GVInt32 index = head[i].y * width + head[i].x; 
      GVInt32 index_l = ((head[i].x - 1) < 0) ? -1 : ((head[i].x - 1) + head[i].y * width); 
      GVInt32 index_r = !((head[i].x + 1) > width) ? -1 : ((head[i].x + 1) + head[i].y * width); 
      GVInt32 index_t = ((head[i].y - 1) < 0) ? -1 : (head[i].x + (head[i].y - 1) * width); 
      GVInt32 index_b = !((head[i].y + 1) > height) ? -1 : (head[i].x + (head[i].y + 1) * width); 
      label[index] = MASK; 
      if (    (!(index_l < 0) && !(label[index_l] < WSHD)) 
          || (!(index_r < 0) && !(label[index_r] < WSHD)) 
          || (!(index_t < 0) && !(label[index_t] < WSHD)) 
          || (!(index_b < 0) && !(label[index_b] < WSHD))) { 
        dist[index] = 1; 
        queue.push(head[i]); 
      } 
    } 
    dist_cnt = 1; 
    queue.push(FICT_PIXEL); 
    while (GV_TRUE) { 
      GVPoint top = queue.front(); 
      GVInt32 index = top.y * width + top.x; 
      GVInt32 index_l = ((top.x - 1) < 0) ? -1 : ((top.x - 1) + top.y * width); 
      GVInt32 index_r = !((top.x + 1) > width) ? -1 : ((top.x + 1) + top.y * width); 
      GVInt32 index_t = ((top.y - 1) < 0) ? -1 : (top.x + (top.y - 1) * width); 
      GVInt32 index_b = !((top.y + 1) > height) ? -1 : (top.x + (top.y + 1) * width); 
      queue.pop(); 
      if (top == FICT_PIXEL) { 
        if (queue.empty()) break; 
        else { 
          ++dist_cnt; 
          queue.push(FICT_PIXEL); 
          top = queue.front(); 
          queue.pop(); 
        } 
      } 
      if (!(index_l < 0)) { 
        if ((dist[index_l] < dist_cnt) && !(label[index_l] < WSHD)) { 
          if (label[index_l] > WSHD) { 
            if ((label[index] == MASK) || (label[index] = WSHD)) label[index] = label[index_l]; 
            else if (!(label[index] == label[index_l])) label[index] = WSHD; 
          } else if (label[index] == MASK) { 
            label[index] = WSHD; 
          } 
        } else if ((label[index_l] == MASK) && (dist[index_l] == 0)) { 
          dist[index_l] = dist_cnt + 1; 
          queue.push(GVPoint(top.x - 1, top.y)); 
        } 
      } 
      if (!(index_r < 0)) { 
        if ((dist[index_r] < dist_cnt) && !(label[index_r] < WSHD)) { 
          if (label[index_r] > WSHD) { 
            if ((label[index] == MASK) || (label[index] = WSHD)) label[index] = label[index_r]; 
            else if (!(label[index] == label[index_r])) label[index] = WSHD; 
          } else if (label[index] == MASK) { 
            label[index] = WSHD; 
          } 
        } else if ((label[index_r] == MASK) && (dist[index_r] == 0)) { 
          dist[index_r] = dist_cnt + 1; 
          queue.push(GVPoint(top.x + 1, top.y)); 
        } 
      } 
      if (!(index_t < 0)) { 
        if ((dist[index_t] < dist_cnt) && !(label[index_t] < WSHD)) { 
          if (label[index_t] > WSHD) { 
            if ((label[index] == MASK) || (label[index] = WSHD)) label[index] = label[index_t]; 
            else if (!(label[index] == label[index_t])) label[index] = WSHD; 
          } else if (label[index] == MASK) { 
            label[index] = WSHD; 
          } 
        } else if ((label[index_t] == MASK) && (dist[index_t] == 0)) { 
          dist[index_t] = dist_cnt + 1; 
          queue.push(GVPoint(top.x, top.y - 1)); 
        } 
      } 
      if (!(index_b < 0)) { 
        if ((dist[index_b] < dist_cnt) && !(label[index_b] < WSHD)) { 
          if (label[index_b] > WSHD) { 
            if ((label[index] == MASK) || (label[index] = WSHD)) label[index] = label[index_b]; 
            else if (!(label[index] == label[index_b])) label[index] = WSHD; 
          } else if (label[index] == MASK) { 
            label[index] = WSHD; 
          } 
        } else if ((label[index_b] == MASK) && (dist[index_b] == 0)) { 
          dist[index_b] = dist_cnt + 1; 
          queue.push(GVPoint(top.x, top.y + 1)); 
        } 
      } 
    } 
    for (GVInt32 i = 0; !(i == space); ++i) { 
      GVInt32 index = head[i].y * width + head[i].x; 
      dist[index] = 0; 
      if (label[index] == MASK) { 
        label_cnt++; 
        label[index] = label_cnt; 
        queue.push(head[i]); 
        while (!queue.empty()) { 
          GVPoint top = queue.front(); 
          GVInt32 index_l = ((top.x - 1) < 0) ? -1 : ((top.x - 1) + top.y * width); 
          GVInt32 index_r = !((top.x + 1) > width) ? -1 : ((top.x + 1) + top.y * width); 
          GVInt32 index_t = ((top.y - 1) < 0) ? -1 : (top.x + (top.y - 1) * width); 
          GVInt32 index_b = !((top.y + 1) > height) ? -1 : (top.x + (top.y + 1) * width); 
          queue.pop(); 
          if (!(index_l < 0) && (label[index_l] == MASK)) { 
            queue.push(GVPoint(top.x - 1, top.y)); 
            label[index_l] = label_cnt; 
          } 
          if (!(index_r < 0) && (label[index_r] == MASK)) { 
            queue.push(GVPoint(top.x + 1, top.y)); 
            label[index_r] = label_cnt; 
          } 
          if (!(index_t < 0) && (label[index_t] == MASK)) { 
            queue.push(GVPoint(top.x, top.y - 1)); 
            label[index_t] = label_cnt; 
          } 
          if (!(index_b < 0) && (label[index_b] == MASK)) { 
            queue.push(GVPoint(top.x, top.y + 1)); 
            label[index_b] = label_cnt; 
          } 
        } 
      } 
    } 
  } 
 
  // Release resources 
  delete[] image_stat; 
  delete[] image_space; 
  delete[] image_sort; 
  delete[] dist; 
} 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

上一篇:C语言实现学生学籍管理系统

栏    目:C语言

下一篇:linux下C/C++学生信息管理系统

本文标题:C++实现分水岭算法(Watershed Algorithm)

本文地址:https://www.xiuzhanwang.com/a1/Cyuyan/944.html

网页制作CMS教程网络编程软件编程脚本语言数据库服务器

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:835971066 | 邮箱:835971066#qq.com(#换成@)

Copyright © 2002-2020 脚本教程网 版权所有