opencv3/C++ HOG特征提取方式
HOG特征
HOG(Histograms of Oriented Gradients)梯度方向直方图
通过利用梯度信息能反映图像目标的边缘信息并通过局部梯度的大小将图像局部的外观和形状特征化.在论文Histograms of Oriented Gradients for Human Detection中被提出.
HOG特征的提取过程为:
Gamma归一化;
计算梯度;
划分cell
组合成block,统计block直方图;
梯度直方图归一化;
收集HOG特征。
Gamma归一化:
对图像颜色进行Gamma归一化处理,降低局部阴影及背景因素的影响.
计算梯度:
通过差分计算出图像在水平方向上及垂直方向上的梯度:
然后得到各个像素点的梯度的幅值及方向:
划分cell
将整个窗口划分成大小相同互不重叠的细胞单元cell(如8×8像素),计算出每个cell的梯度大小及方向.然后将每像素的梯度方向在0−180o0−180o 区间内(无向:0-180,有向:0-360)平均分为9个bins,每个cell内的像素用幅值来表示权值,为其所在的梯度直方图进行加权投票.
9bins:
如图,不同数量的bins下的错误率:
组合成block,统计block直方图
将2×2个相邻的cell组成大小为16×16的像素块即block.依次将block大小的滑动窗口从左到右从上到下滑动,求其梯度方向直方图向量.
如图,不同大小的cell与不同大小的block作用下的效果对比:
梯度直方图归一化
作者对比了L2-norm、L1-norm、L1-sqrt等归一化方法,发现都比非标准数据有显着的改善.其中L2-norm和L1-sqrt效果最好,而L1-norm检测效果要比L2-norm和L1-sqrt低5%.
如图,不同的归一化方法效果对比:
这样通过归一化能够进一步地对光照、阴影和边缘进行压缩.
收集HOG特征
由于每个cell内的梯度方向分成了9个bins,这样每个细胞单元的HOG特征向量长度是9.
这样,对于大小为128×64大小的图像,采用8*8像素的sell,2×2个cell组成的16×16像素的block,采用8像素的block移动步长,这样检测窗口block的数量有((128-16)/8+1)×((64-16)/8+1)=15×7.则HOG特征描述符的维数为15×7×4×9.
HOG的缺点:
速度慢,实时性差;难以处理遮挡问题。
OpenCV应用
利用HOG进行行人检测时有两种用法:
1、采用HOG特征+SVM分类器进行行人检测;
2、利用HOG+SVM训练自己的XML文件。
采用第一种方法,使用HOG特征结合SVM分类器进行行人检测,简单示例:
#include <opencv2/opencv.hpp> #include <opencv2/objdetect.hpp> using namespace std; using namespace cv; int main() { Mat src, dst; src = imread("E:/image/image/passerby.jpg",1); if (src.empty()) { printf("can not load the image...\n"); return -1; } dst = src.clone(); vector<Rect> findrects, findrect; HOGDescriptor HOG; //SVM分类器 HOG.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector()); //多尺度检测 HOG.detectMultiScale(src, findrects, 0, Size(4,4), Size(0,0), 1.05, 2); //若rects有嵌套,则取最外面的矩形存入rect for(int i=0; i < findrects.size(); i++) { Rect rect = findrects[i]; int j=0; for(; j < findrects.size(); j++) if(j != i && (rect & findrects[j]) == rect) break; if( j == findrects.size()) findrect.push_back(rect); } //框选出检测结果 for(int i=0; i<findrect.size(); i++) { RNG rng(i); Scalar color = Scalar(rng.uniform(0,255), rng.uniform(0,255), rng.uniform(0,255)); rectangle(dst, findrect[i].tl(), findrect[i].br(), color, 2); } imshow("src",src); imshow("dst",dst); waitKey(); return 0; }
以上这篇opencv3/C++ HOG特征提取方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
上一篇:gcc中extra qualification错误的解决
栏 目:C语言
下一篇:C++ push方法与push_back方法的使用与区别
本文地址:https://www.xiuzhanwang.com/a1/Cyuyan/95.html
您可能感兴趣的文章
- 04-02c语言没有round函数 round c语言
- 01-10深入理解C++中常见的关键字含义
- 01-10使用C++实现全排列算法的方法详解
- 01-10c++中inline的用法分析
- 01-10用C++实现DBSCAN聚类算法
- 01-10全排列算法的非递归实现与递归实现的方法(C++)
- 01-10C++大数模板(推荐)
- 01-10浅谈C/C++中的static与extern关键字的使用详解
- 01-10深入C/C++浮点数在内存中的存储方式详解
- 01-10深入理解C/C++混合编程
阅读排行
本栏相关
- 04-02c语言函数调用后清空内存 c语言调用
- 04-02func函数+在C语言 func函数在c语言中
- 04-02c语言的正则匹配函数 c语言正则表达
- 04-02c语言用函数写分段 用c语言表示分段
- 04-02c语言中对数函数的表达式 c语言中对
- 04-02c语言编写函数冒泡排序 c语言冒泡排
- 04-02c语言没有round函数 round c语言
- 04-02c语言分段函数怎么求 用c语言求分段
- 04-02C语言中怎么打出三角函数 c语言中怎
- 04-02c语言调用函数求fibo C语言调用函数求
随机阅读
- 01-11Mac OSX 打开原生自带读写NTFS功能(图文
- 01-10C#中split用法实例总结
- 01-11ajax实现页面的局部加载
- 01-10SublimeText编译C开发环境设置
- 01-10delphi制作wav文件的方法
- 08-05dedecms(织梦)副栏目数量限制代码修改
- 08-05DEDE织梦data目录下的sessions文件夹有什
- 04-02jquery与jsp,用jquery
- 01-10使用C语言求解扑克牌的顺子及n个骰子
- 08-05织梦dedecms什么时候用栏目交叉功能?